Full metadata record
DC FieldValueLanguage
dc.contributor.authorLo, Kuo-Huaen_US
dc.contributor.authorChuang, Jen-Huien_US
dc.date.accessioned2014-12-08T15:21:43Z-
dc.date.available2014-12-08T15:21:43Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4577-1303-3en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/15449-
dc.description.abstractIn this paper, we propose an efficient people localization approach using multiple cameras based on axial representations of foreground regions. Unlike many previous methods that need to project all foreground pixels of all views to multiple reference planes via homography, we instead apply vanishing point-based line sampling to reduce the large amount of pixel processing so that computational efficiency can be greatly enhanced. Experimental simulations show that the proposed approach is more than 40 times faster than the compared, pixel-based localization method on average, without sacrificing the localization accuracy.en_US
dc.language.isoen_USen_US
dc.subjectVanishing pointen_US
dc.subjectline samplesen_US
dc.subjectmultiple reference planesen_US
dc.subjectlocalizationen_US
dc.titleVANISHING POINT-BASED LINE SAMPLING FOR EFFICIENT AXIS-BASED PEOPLE LOCALIZATIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)en_US
dc.citation.spage521en_US
dc.citation.epage524en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000298962500131-
Appears in Collections:Conferences Paper