完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Tin-Chih Tolyen_US
dc.contributor.authorChiu, Min-Chien_US
dc.date.accessioned2020-07-01T05:22:07Z-
dc.date.available2020-07-01T05:22:07Z-
dc.date.issued2020-06-01en_US
dc.identifier.issn1386-9620en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10729-018-9441-yen_US
dc.identifier.urihttp://hdl.handle.net/11536/154539-
dc.description.abstractA challenge facing all ubiquitous clinic recommendation systems is that patients often have difficulty articulating their requirements. To overcome this problem, a ubiquitous clinic recommendation mechanism was designed in this study by mining the clinic preferences of patients. Their preferences were defined using the weights in the ubiquitous clinic recommendation mechanism. An integer nonlinear programming problem was solved to tune the values of the weights on a rolling basis. In addition, since it may take a long time to adjust the values of weights to their asymptotic values, the back propagation network (BPN)-response surface method (RSM) method is applied to estimate the asymptotic values of weights. The proposed methodology was tested in a regional study. Experimental results indicated that the ubiquitous clinic recommendation system outperformed several existing methods in improving the successful recommendation rate.en_US
dc.language.isoen_USen_US
dc.subjectUbiquitous recommendationen_US
dc.subjectClinicen_US
dc.subjectInteger nonlinear programmingen_US
dc.subjectData miningen_US
dc.titleMining the preferences of patients for ubiquitous clinic recommendationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10729-018-9441-yen_US
dc.identifier.journalHEALTH CARE MANAGEMENT SCIENCEen_US
dc.citation.volume23en_US
dc.citation.issue2en_US
dc.citation.spage173en_US
dc.citation.epage184en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000540146400002en_US
dc.citation.woscount3en_US
顯示於類別:期刊論文