Full metadata record
DC FieldValueLanguage
dc.contributor.authorRameez, Mohammaden_US
dc.contributor.authorLin, Eric Yan-Ruen_US
dc.contributor.authorRaghunath, Putikamen_US
dc.contributor.authorNarra, Sudhakaren_US
dc.contributor.authorSong, Donghoonen_US
dc.contributor.authorLin, Ming-Changen_US
dc.contributor.authorHung, Chen-Hsiungen_US
dc.contributor.authorDiau, Eric Wei-Guangen_US
dc.date.accessioned2020-07-01T05:22:09Z-
dc.date.available2020-07-01T05:22:09Z-
dc.date.issued2020-05-13en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsami.0c03704en_US
dc.identifier.urihttp://hdl.handle.net/11536/154566-
dc.description.abstractTin-based perovskites degrade rapidly upon interaction with water and oxygen in air because Sn-I bonds are weak. To address this issue, we developed novel tin perovskites, FASnI((3-x))(SCN)(x) (x = 0, 1, 2, or 3), by employing a pseudohalide, thiocyanate (SCN-), as a replacement for halides and as an inhibitor to suppress the Sn2+/Sn4+ oxidation. The structural and electronic properties of pseudohalide tin perovskites in this series were explored with quantum-chemical calculations by employing the plane-wave density functional theory (DFT) method; the corresponding results are consistent with the experimental results. Carbon-based perovskite devices fabricated with tin perovskite FASnI(SCN)(2) showed about a threefold enhancement of the device efficiency (2.4%) relative to that of the best FASnI(3)-based device (0.9%), which we attribute to the improved suppression of the formation of Sn4+, retarded charge recombination, enhanced hydrophobicity, and stronger interactions between Sn and thiocyanate for FASnI(SCN)(2) than those for FASnI(3). After the incorporation of phenylethyleneammonium iodide (PEAI, 10%) and ethylenediammonium diiodide (EDAI(2), 5%) as coadditives, the FASnI(SCN)(2) device gave the best photovoltaic performance with J(SC) = 20.17 mA cm(-2), V-OC = 322 mV, fill factor (FF) = 0.574, and overall efficiency of power conversion PCE = 3.7%. Moreover, these pseudohalide-containing devices display negligible photocurrent-voltage hysteresis and great stability in ambient air conditions.en_US
dc.language.isoen_USen_US
dc.subjectperovskiteen_US
dc.subjectpseudohalideen_US
dc.subjectsolar cellsen_US
dc.subjecttin perovskiteen_US
dc.subjectthiocyanateen_US
dc.titleDevelopment of Hybrid Pseudohalide Tin Perovskites for Highly Stable Carbon-Electrode Solar Cellsen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsami.0c03704en_US
dc.identifier.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.citation.volume12en_US
dc.citation.issue19en_US
dc.citation.spage21739en_US
dc.citation.epage21747en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用化學系zh_TW
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000535246100057en_US
dc.citation.woscount0en_US
Appears in Collections:Articles