Full metadata record
DC FieldValueLanguage
dc.contributor.authorYen, Minen_US
dc.contributor.authorLai, Yu-Hongen_US
dc.contributor.authorZhang, Chun-Lien_US
dc.contributor.authorCheng, Hou-Yungen_US
dc.contributor.authorHsieh, Yi-Tingen_US
dc.contributor.authorChen, Jhih-Weien_US
dc.contributor.authorChen, Yi-Chunen_US
dc.contributor.authorChang, Lien_US
dc.contributor.authorTsou, Nien-Tien_US
dc.contributor.authorLi, Jiang-Yuen_US
dc.contributor.authorChu, Ying-Haoen_US
dc.date.accessioned2020-07-01T05:22:09Z-
dc.date.available2020-07-01T05:22:09Z-
dc.date.issued2020-05-13en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsami.0c02275en_US
dc.identifier.urihttp://hdl.handle.net/11536/154567-
dc.description.abstractThe piezoresistive effect has shown a remarkable potential for mechanical sensor applications and been sought for its excellent performance. A great attention was paid to the giant piezoresistive effect and sensitivity delivered by silicon-based nanostructures. However, low thermal stability and complicated fabrication process hinder their practical applications. To overcome these issues and enhance the functionalities, we envision the substantial piezopotential in a zinc oxide (ZnO)/muscovite (mica) heteroepitaxy system based on theoretical consideration and realize it in practice. High piezoresistive effect with giant change of resistivity (-80 to 240%) and large gauge factor (>1000) are demonstrated through mechanical bending. The detailed features of heteroepitaxy, electrical transport, and strain are probed to understand the mechanism of such a giant resistivity change. In addition, a bending model is established to reveal the distribution of strain. Finally, we demonstrate a flex sensor featuring high sensitivity, optical transparency, and two-segment sensing with a great potential toward practical applications. Such an oxide heteroepitaxy exhibits excellent piezoresistive properties and mechanical flexibility. In the near future, the importance of flex sensors will emerge because of the precise control in the automation industries, and our results lead to a new design in the field of flex sensors.en_US
dc.language.isoen_USen_US
dc.subjectpiezoresistive effecten_US
dc.subjectpiezopotentialen_US
dc.subjectflex sensoren_US
dc.subjectZnOen_US
dc.subjectmuscoviteen_US
dc.titleGiant Resistivity Change of Transparent ZnO/Muscovite Heteroepitaxyen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsami.0c02275en_US
dc.identifier.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.citation.volume12en_US
dc.citation.issue19en_US
dc.citation.spage21818en_US
dc.citation.epage21826en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000535246100065en_US
dc.citation.woscount0en_US
Appears in Collections:Articles