完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Cheng-Hsuanen_US
dc.contributor.authorChu, Hui-Shanen_US
dc.contributor.authorKuo, Bor-Chenen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:21:44Z-
dc.date.available2014-12-08T15:21:44Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4577-1005-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/15460-
dc.description.abstractFeature extraction plays an essential role in Hyperspectral image classification. Linear discriminant analysis (LDA) is a commonly used feature extraction (FE) method to resolve the Hughes phenomenon for classification. The Hughes phenomenon (also called the curse of dimensionality) is often encountered in classification when the dimensionality of the space grows and the size of the training set is fixed, especially in the small sampling size problem. Recent studies show that the spatial information can greatly improve the classification performance. Hence, for hyperspectral image classification, it is not only necessary to use the available spectral information but also to exploit the spatial information. In this paper, spatial information is acquired by the concept of the Markov random field (MRF), and this spatial information is used to form the membership values of every pixel in the hyperspectral image. The experimental results on two hyperspectral images, the Washington DC Mall and the Indian Pine Site, show that the proposed method can yield a better classification performance than LDA in the small sampling size problem.en_US
dc.language.isoen_USen_US
dc.subjectfeature extractionen_US
dc.subjectlinear discriminant analysisen_US
dc.titleHYPERSPECTRAL IMAGE CLASSIFICATION USING SPECTRAL AND SPATIAL INFORMATION BASED LINEAR DISCRIMINANT ANALYSISen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)en_US
dc.citation.spage1716en_US
dc.citation.epage1719en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000297496301191-
顯示於類別:會議論文