完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Kou-Yuanen_US
dc.contributor.authorShen, Liang-Chien_US
dc.contributor.authorWeng, Li-Shengen_US
dc.date.accessioned2014-12-08T15:21:44Z-
dc.date.available2014-12-08T15:21:44Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4577-1005-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/15461-
dc.description.abstractWe use the radial basis function network (RBF) for well log data inversion. The first step of the network is the K-means clustering. For the second step, we adopt the 2-layer perceptron instead of conventional 1-layer perceptron. The 2-layer perceptron can do the more nonlinear mapping. The gradient descent method is used in the back propagation learning rule at the second step. The input of the network is the apparent conductivity (Ca) and the output of the network is the true formation conductivity (Ct). The original features are the network input for training process. According to our experimental results, the three-layer radial basis function can get smaller error between the desired output and the actual output. The network with 10 input features, first layer with 27 nodes, second layer with 10 hidden node, and 10 output nodes can get the smallest average mean absolute error on simulated well log data. After simulation, we apply the network to the real field data. The result is good. It shows that the RBF can do the well log data inversion.en_US
dc.language.isoen_USen_US
dc.subjectRadial basis function networken_US
dc.subjectwell log inversionen_US
dc.subjectmultilayer perceptronen_US
dc.titleWELL LOG DATA INVERSION USING RADIAL BASIS FUNCTION NETWORKen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)en_US
dc.citation.spage4439en_US
dc.citation.epage4442en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000297496304099-
顯示於類別:會議論文