Title: SiCxNy-based resistive and threshold switching by using single precursor plasma-enhanced atomic layer deposition
Authors: Hsu, Yu-Lin
Chang, Yao-Feng
Chung, Wei-Min
Chen, Ying-Chen
Lin, Chao-Cheng
Leu, Jihperng
材料科學與工程學系
Department of Materials Science and Engineering
Issue Date: 26-May-2020
Abstract: In this work, SiCxNy-based resistive switching memory by using a single precursor for the back end of line (BEOL) integration has been investigated. SiCxNy films were deposited on the aluminum (Al) substrates using plasma enhanced atomic layer deposition (PEALD) method. The effects of SiCxNy chemical structure with respect to resistive switching characteristics have been studied, and the results suggest that the resistive switching mechanism is dominated by the interfacial Schottky junction with SiCxNy composition. This work not only demonstrates a PEALD method in fabricating SiCxNy-based electronics active devices but also provides additional insights into the interaction between the electrical and chemical structures in bi-functional resistive switching or threshold switching behavior. A demonstrated PEALD tool with simple single-precursor for SiCxNy deposition shows excellent feasibility to be used as functional memory and selector devices, further giving the potential pathway for advanced BEOL process integration.
URI: http://dx.doi.org/10.1063/5.0011192
http://hdl.handle.net/11536/154623
ISSN: 0003-6951
DOI: 10.1063/5.0011192
Journal: APPLIED PHYSICS LETTERS
Volume: 116
Issue: 21
Begin Page: 0
End Page: 0
Appears in Collections:Articles