Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Jhen-Hongen_US
dc.contributor.authorBabicheva, Viktoriia E.en_US
dc.contributor.authorYu, Min-Wenen_US
dc.contributor.authorLu, Tien-Changen_US
dc.contributor.authorLin, Tzy-Rongen_US
dc.contributor.authorChen, Kuo-Pingen_US
dc.date.accessioned2020-07-01T05:22:13Z-
dc.date.available2020-07-01T05:22:13Z-
dc.date.issued2020-05-26en_US
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsnano.0c00185en_US
dc.identifier.urihttp://hdl.handle.net/11536/154635-
dc.description.abstractArtificial color pixels based on dielectric Mie resonators are appealing for scientific research as well as practical design. Vivid colors are imperative for displays and imaging. Dielectric metasurface-based artificial pixels are promising candidates for developing flat, flexible, and/or wearable displays. Considering the application feasibility of artificial color pixels, wide color gamuts are crucial for contemporary display technology. To achieve a wide color gamut, ensuring the purity and efficiency of nanostructure resonance peaks in the visible spectrum is necessary for structural color design. Low-loss dielectric materials are suitable for achieving vivid colors with structural color pixels. However, high-order Mie resonances prevent color pixels based on dielectric metasurfaces from efficiently generating highly saturated colors. In particular, fundamental Mie resonances (electric/magnetic dipole) for red can result in not only a strong resonance peak at 650 nm but also high-order Mie resonances at shorter wavelengths, which reduces the saturation of the target color. To address these problems, we fabricated silicon nitride metasurfaces on quartz substrates and applied Rayleigh anomalies at relatively short wavelengths to successfully suppress high-order Mie resonances, thus creating vivid color pixels. We performed numerical design, semianalytic considerations, and experimental proof-of-concept examinations to demonstrate the performance of the silicon nitride metasurfaces. Apart from traditional metasurface designs that involve transmission and reflection modes, we determined that lateral light incidence on silicon nitride metasurfaces can provide vivid colors through long-range dipole interactions; this can thus extend the applications of such surfaces to eyewear displays and guided-wave illumination techniques.en_US
dc.language.isoen_USen_US
dc.subjecthigh-refractive-index nanostructuresen_US
dc.subjectmetasurfacesen_US
dc.subjectcoloren_US
dc.subjectMie resonancesen_US
dc.subjectlattice resonancesen_US
dc.subjectsilicon nitrideen_US
dc.titleStructural Colors Enabled by Lattice Resonance on Silicon Nitride Metasurfacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsnano.0c00185en_US
dc.identifier.journalACS NANOen_US
dc.citation.volume14en_US
dc.citation.issue5en_US
dc.citation.spage5678en_US
dc.citation.epage5685en_US
dc.contributor.department光電系統研究所zh_TW
dc.contributor.department照明與能源光電研究所zh_TW
dc.contributor.department影像與生醫光電研究所zh_TW
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentInstitute of Photonic Systemen_US
dc.contributor.departmentInstitute of Lighting and Energy Photonicsen_US
dc.contributor.departmentInstitute of Imaging and Biomedical Photonicsen_US
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000537682300053en_US
dc.citation.woscount0en_US
Appears in Collections:Articles