標題: | 語料庫輔助的媒體論述分析:以台灣平面媒體中國夢報導為語料的實證研究 Corpus-assisted Media Discourse Analysis: Methods, Theoretical Framework and Case Study of the Chia Dream Corpora |
作者: | 郭文平 Win-Ping Kuo |
關鍵字: | 中國夢;語料庫輔助論述分析;語料庫語言學;論述分析;數位人文;China dream;Corpus-assisted discourse studies;Corpus Linguistic;discourse analysis;Digital humanities |
公開日期: | Jan-2020 |
出版社: | 國立交通大學傳播與科技學系 台灣資訊社會研究學會 Department of Communication & Technology at National Chiao Tung University Taiwan Academy for Information Society. |
摘要: | 本研究探討語料庫輔助媒體論述分析(CADS)的相關概念及應用,研究者以台灣四家平面媒體1,100篇關於「中國夢」報導建置成語料庫作為分析案例。本研究從語料庫分析的理論包括詞頻統計、共現詞分析及語境脈絡分析等出發,探討CADS觀點如何進行文本的客觀主題定位、字彙韻律結構發掘及關鍵節點字彙的語用牽涉分析。本研究同時搭配再脈絡化、命名、參考、比較等論述分析的理論觀點,對範例語料庫文本進行深度詮釋。透過CADS分析脈絡,本文提出從微觀字詞分析到巨觀的論述分析的文本分析模式。 The paper explores aspects and applications of corpus-assisted discourse studies(CADS). 1100 reports that include "the China Dream" from the four major Taiwanese newspapers were collected as a corpus to demonstrate my analysis. A corpus linguistic method enables the researcher to map dominant issues in news reports, probe semantic prosody and analyze "aboutness" of text via examinations of keywords in context. A subsequent analysis with different aspects of discourse approaches including recontextualization, naming, referencing, comparing allow further exploration of the texts. Based on the process of CADS, this paper proposes a framework of textual analysis that looks into a micro-level of lexis and could reveal a macro-level of discursive structure. |
URI: | http://ccis.nctu.edu.tw/issue.asp?P_No=49 http://ccis.nctu.edu.tw/issueArticle.asp?P_No=49&CA_ID=426 http://dx.doi.org/10.29843/JCCIS.202001_(38).0005 http://hdl.handle.net/11536/154783 |
ISSN: | 1680-8428 |
DOI: | 10.29843/JCCIS.202001_(38).0005 |
期刊: | 資訊社會研究 The Journal of Information Society |
Issue: | 38 |
起始頁: | 51 |
結束頁: | 92 |
Appears in Collections: | Journal of Cyber Culture and Information Society |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.