Full metadata record
DC FieldValueLanguage
dc.contributor.authorHarrach, Bastianen_US
dc.contributor.authorLin, Yi-Hsuanen_US
dc.date.accessioned2020-10-05T01:59:44Z-
dc.date.available2020-10-05T01:59:44Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn0036-1410en_US
dc.identifier.urihttp://dx.doi.org/10.1137/19M1251576en_US
dc.identifier.urihttp://hdl.handle.net/11536/154867-
dc.description.abstractIn this work, we use monotonicity-based methods for the fractional Schrodinger equation with general potentials q is an element of L-infinity(Omega) in a Lipschitz bounded open set Omega subset of R-n in any dimension n is an element of N. We demonstrate that if-and-only-if monotonicity relations between potentials and the Dirichlet-to-Neumann map hold up to a finite dimensional subspace. Based on these if-and-only-if monotonicity relations, we derive a constructive global uniqueness result for the fractional Calderon problem and its linearized version. We also derive a reconstruction method for unknown obstacles in a given domain that only requires the background solution of the fractional Schrodinger equation, and we prove uniqueness and Lipschitz stability from finitely many measurements for potentials lying in an a priori known bounded set in a finite dimensional subset of L-infinity(Omega).en_US
dc.language.isoen_USen_US
dc.subjectfractional inverse problemen_US
dc.subjectfractional Schrodinger equationen_US
dc.subjectmonotonicityen_US
dc.subjectlocalized potentialsen_US
dc.subjectLipschitz stabilityen_US
dc.subjectLoewner orderen_US
dc.titleMONOTONICITY-BASED INVERSION OF THE FRACTIONAL SCHODINGER EQUATION II. GENERAL POTENTIALS AND STABILITYen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/19M1251576en_US
dc.identifier.journalSIAM JOURNAL ON MATHEMATICAL ANALYSISen_US
dc.citation.volume52en_US
dc.citation.issue1en_US
dc.citation.spage402en_US
dc.citation.epage436en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000546967700014en_US
dc.citation.woscount4en_US
Appears in Collections:Articles