Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Ru-Yuen_US
dc.contributor.authorLin, Yi-Hsuanen_US
dc.contributor.authorRueland, Angkanaen_US
dc.date.accessioned2020-10-05T01:59:44Z-
dc.date.available2020-10-05T01:59:44Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn0036-1410en_US
dc.identifier.urihttp://dx.doi.org/10.1137/19M1270288en_US
dc.identifier.urihttp://hdl.handle.net/11536/154868-
dc.description.abstractIn this article we study an inverse problem for the space-time fractional parabolic operator (partial derivative(t) -Delta)(s) +Q with 0 < s < 1 in any space dimension. We uniquely determine the unknown bounded potential Q from infinitely many exterior Dirichlet-to-Neumann type measurements. This relies on Runge approximation and the dual global weak unique continuation properties of the equation under consideration. In discussing weak unique continuation of our operator, a main feature of our argument relies on a new Carleman estimate for the associated degenerate parabolic Caffarelli- Silvestre extension. Furthermore, we also discuss constructive single measurement results based on the approximation and unique continuation properties of the equation.en_US
dc.language.isoen_USen_US
dc.subjectnonlocalen_US
dc.subjectfractional parabolic Calderon problemen_US
dc.subjectunique continuation propertyen_US
dc.subjectRunge approximationen_US
dc.subjectCarleman estimateen_US
dc.subjectdegenerate parabolic equationsen_US
dc.titleTHE CALDERON PROBLEM FOR A SPACE-TIME FRACTIONAL PARABOLIC EQUATIONen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/19M1270288en_US
dc.identifier.journalSIAM JOURNAL ON MATHEMATICAL ANALYSISen_US
dc.citation.volume52en_US
dc.citation.issue3en_US
dc.citation.spage2655en_US
dc.citation.epage2688en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000546975100014en_US
dc.citation.woscount0en_US
Appears in Collections:Articles