標題: THE CALDERON PROBLEM FOR A SPACE-TIME FRACTIONAL PARABOLIC EQUATION
作者: Lai, Ru-Yu
Lin, Yi-Hsuan
Rueland, Angkana
應用數學系
Department of Applied Mathematics
關鍵字: nonlocal;fractional parabolic Calderon problem;unique continuation property;Runge approximation;Carleman estimate;degenerate parabolic equations
公開日期: 1-一月-2020
摘要: In this article we study an inverse problem for the space-time fractional parabolic operator (partial derivative(t) -Delta)(s) +Q with 0 < s < 1 in any space dimension. We uniquely determine the unknown bounded potential Q from infinitely many exterior Dirichlet-to-Neumann type measurements. This relies on Runge approximation and the dual global weak unique continuation properties of the equation under consideration. In discussing weak unique continuation of our operator, a main feature of our argument relies on a new Carleman estimate for the associated degenerate parabolic Caffarelli- Silvestre extension. Furthermore, we also discuss constructive single measurement results based on the approximation and unique continuation properties of the equation.
URI: http://dx.doi.org/10.1137/19M1270288
http://hdl.handle.net/11536/154868
ISSN: 0036-1410
DOI: 10.1137/19M1270288
期刊: SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Volume: 52
Issue: 3
起始頁: 2655
結束頁: 2688
顯示於類別:期刊論文