Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Eric Juweien_US
dc.contributor.authorPrasad, Mukeshen_US
dc.contributor.authorYang, Jieen_US
dc.contributor.authorZheng, Ding Rongen_US
dc.contributor.authorTao, Xianen_US
dc.contributor.authorMery, Domingoen_US
dc.contributor.authorYoung, Ku Youngen_US
dc.contributor.authorLin, Chin Tengen_US
dc.date.accessioned2020-10-05T01:59:45Z-
dc.date.available2020-10-05T01:59:45Z-
dc.date.issued1970-01-01en_US
dc.identifier.issn1380-7501en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11042-020-09055-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/154880-
dc.description.abstractThis paper proposes a novel online self-learning detection system for different types of objects. It allows users to random select detection target, generating an initial detection model by selecting a small piece of image sample and continue training the detection model automatically. The proposed framework is divided into two parts: First, the initial detection model and the online reinforcement learning. The detection model is based on the proportion of users of the Haar-like features to generate feature pool, which is used to train classifiers and get positive-negative (PN) classifier model. Second, as the videos plays, the detecting model detects the new sample by Nearest Neighbor (NN) Classifier to get the PN similarity for new model. Online reinforcement learning is used to continuously update classifier, PN model and new classifier. The experiment shows the result of less detection sample with automatic online reinforcement learning is satisfactory.en_US
dc.language.isoen_USen_US
dc.subjectObject detectionen_US
dc.subjectOnline learningen_US
dc.subjectReal-time learningen_US
dc.subjectFeature poolen_US
dc.subjectClassifieren_US
dc.titleA novel online self-learning system with automatic object detection model for multimedia applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11042-020-09055-6en_US
dc.identifier.journalMULTIMEDIA TOOLS AND APPLICATIONSen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000548128400006en_US
dc.citation.woscount0en_US
Appears in Collections:Articles