完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSpector, Danielen_US
dc.date.accessioned2020-10-05T01:59:45Z-
dc.date.available2020-10-05T01:59:45Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn0032-5155en_US
dc.identifier.urihttp://dx.doi.org/10.4171/PM/2031en_US
dc.identifier.urihttp://hdl.handle.net/11536/154881-
dc.description.abstractIn this paper we give a streamlined proof of an inequality recently obtained by the author: For every alpha is an element of (0, 1) there exists a constant C = C(alpha, d) > 0 such that parallel to u parallel to(Ld/(d-alpha), 1(Rd)) <= C parallel to D(alpha)u parallel to(L1(Rd; Rd)) for all u is an element of L-q(R-d) for some 1 <= q < d/(1 - alpha) such that D(alpha)u := VI(1-alpha)u is an element of L-1(R-d; R-d). We also give a counterexample which shows that in contrast to the case alpha = 1, the fractional gradient does not admit an L-1 trace inequality, i.e. parallel to D(alpha)u parallel to(L1(Rd; Rd)) cannot control the integral of u with respect to the Hausdorff content H-co(d-alpha). The main substance of this counter-example is a result of interest in its own right, that even a weak-type estimate for the Riesz transforms fails on the space L-1(H-co(d-beta)), beta is an element of [1, d). It is an open question whether this failure of a weak-type estimate for the Riesz transforms extends to beta is an element of (0, 1).en_US
dc.language.isoen_USen_US
dc.subjectL-1-Sobolev inequalityen_US
dc.subjectLorentz spacesen_US
dc.subjecttrace inequalityen_US
dc.titleA noninequality for the fractional gradienten_US
dc.typeArticleen_US
dc.identifier.doi10.4171/PM/2031en_US
dc.identifier.journalPORTUGALIAE MATHEMATICAen_US
dc.citation.volume76en_US
dc.citation.issue2en_US
dc.citation.spage153en_US
dc.citation.epage168en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000548178600004en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文