完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHong, Hsiao-Chinen_US
dc.contributor.authorChuang, Cheng-Hsunen_US
dc.contributor.authorHuang, Wei-Chihen_US
dc.contributor.authorWeng, Shun-Longen_US
dc.contributor.authorChen, Chia-Hungen_US
dc.contributor.authorChang, Kuang-Hsinen_US
dc.contributor.authorLiao, Kuang-Wenen_US
dc.contributor.authorHuang, Hsien-Daen_US
dc.date.accessioned2020-10-05T01:59:45Z-
dc.date.available2020-10-05T01:59:45Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn1838-7640en_US
dc.identifier.urihttp://dx.doi.org/10.7150/thno.46142en_US
dc.identifier.urihttp://hdl.handle.net/11536/154887-
dc.description.abstractRationale: Triple-negative breast cancer (TNBC), which has the highest recurrence rate and shortest survival time of all breast cancers, is in urgent need of a risk assessment method to determine an accurate treatment course. Recently, miRNA expression patterns have been identified as potential biomarkers for diagnosis, prognosis, and personalized therapy. Here, we investigate a combination of candidate miRNAs as a clinically applicable signature that can precisely predict relapse in TNBC patients after surgery. Methods: Four total cohorts of training (TCGA_TNBC and GEOD-40525) and validation (GSE40049 and GSE19783) datasets were analyzed with logistic regression and Gaussian mixture analyses. We established a miRNA signature risk model and identified an 8-miRNA signature for the prediction of TNBC relapse. Results: The miRNA signature risk model identified ten candidate miRNAs in the training set. By combining 8 of the 10 miRNAs (miR-139-5p, miR-10b-5p, miR-486-5p, miR-455-3p, miR-107, miR-146b-5p, miR-324-5p and miR-20a-5p), an accurate predictive model of relapse in TNBC patients was established and was highly correlated with prognosis (AUC of 0.80). Subsequently, this 8-miRNA signature prognosticated relapse in the two validation sets with AUCs of 0.89 and 0.90. Conclusion: The 8-miRNA signature predictive model may help clinicians provide a prognosis for TNBC patients with a high risk of recurrence after surgery and provide further personalized treatment to decrease the chance of relapse.en_US
dc.language.isoen_USen_US
dc.subjecttriple-negative breast canceren_US
dc.subjectmiRNA signatureen_US
dc.subjectrelapseen_US
dc.subjectpredictionen_US
dc.subjectprognosisen_US
dc.titleA panel of eight microRNAs is a good predictive parameter for triple-negative breast cancer relapseen_US
dc.typeArticleen_US
dc.identifier.doi10.7150/thno.46142en_US
dc.identifier.journalTHERANOSTICSen_US
dc.citation.volume10en_US
dc.citation.issue19en_US
dc.citation.spage8771en_US
dc.citation.epage8789en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.identifier.wosnumberWOS:000548566600009en_US
dc.citation.woscount1en_US
顯示於類別:期刊論文