Full metadata record
DC FieldValueLanguage
dc.contributor.authorChan, Chi Hinen_US
dc.contributor.authorCzubak, Magdalenaen_US
dc.date.accessioned2020-10-05T01:59:46Z-
dc.date.available2020-10-05T01:59:46Z-
dc.date.issued1970-01-01en_US
dc.identifier.issn1050-6926en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s12220-020-00466-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/154891-
dc.description.abstractWe show there exists a nontrivial H-0(1) solution to the steady Stokes equation on the 2D exterior domain in the hyperbolic plane. Hence we show there is no Stokes paradox in the hyperbolic setting. In fact, the solution we construct satisfies both the no-slip boundary condition and vanishing at infinity. This means that the solution is in some sense actually a paradoxical solution since the fluid is moving without having any physical cause to move. We also show the existence of a nontrivial solution to the steady Navier-Stokes equation in the same setting, whereas the analogous problem is open in the Euclidean case.en_US
dc.language.isoen_USen_US
dc.subjectNavier-Stokesen_US
dc.subjectStokes paradoxen_US
dc.subjectExterior domainen_US
dc.subjectObstacleen_US
dc.subjectHyperbolic planeen_US
dc.titleAntithesis of the Stokes Paradox on the Hyperbolic Planeen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12220-020-00466-3en_US
dc.identifier.journalJOURNAL OF GEOMETRIC ANALYSISen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000548755500001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles