完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Tseng, Wei-Shiuan | en_US |
dc.contributor.author | Chen, Yen-Chun | en_US |
dc.contributor.author | Hsu, Chen-Chih | en_US |
dc.contributor.author | Lu, Chen-Hsuan | en_US |
dc.contributor.author | Wu, Chih-, I | en_US |
dc.contributor.author | Yeh, Nai-Chang | en_US |
dc.date.accessioned | 2020-10-05T01:59:46Z | - |
dc.date.available | 2020-10-05T01:59:46Z | - |
dc.date.issued | 2020-08-14 | en_US |
dc.identifier.issn | 0957-4484 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1088/1361-6528/ab9045 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/154894 | - |
dc.description.abstract | Deposition of layers of graphene on silicon has the potential for a wide range of optoelectronic and mechanical applications. However, direct growth of graphene on silicon has been difficult due to the inert, oxidized silicon surfaces. Transferring graphene from metallic growth substrates to silicon is not a good solution either, because most transfer methods involve multiple steps that often lead to polymer residues or degradation of sample quality. Here we report a single-step method for large-area direct growth of continuous horizontal graphene sheets and vertical graphene nano-walls on silicon substrates by plasma-enhanced chemical vapor deposition (PECVD) without active heating. Comprehensive studies utilizing Raman spectroscopy, x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical transmission are carried out to characterize the quality and properties of these samples. Data gathered by the residual gas analyzer (RGA) during the growth process further provide information about the synthesis mechanism. Additionally, ultra-low friction (with a frictional coefficient similar to 0.015) on multilayer graphene-covered silicon surface is achieved, which is approaching the superlubricity limit (for frictional coefficients <0.01). Our growth method therefore opens up a new pathway towards scalable and direct integration of graphene into silicon technology for potential applications ranging from structural superlubricity to nanoelectronics, optoelectronics, and even the next-generation lithium-ion batteries. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | graphene-on-silicon | en_US |
dc.subject | PECVD | en_US |
dc.subject | AFM | en_US |
dc.subject | superlubricity | en_US |
dc.subject | XPS | en_US |
dc.subject | UPS | en_US |
dc.subject | RGA | en_US |
dc.title | Direct large-area growth of graphene on silicon for potential ultra-low-friction applications and silicon-based technologies | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1088/1361-6528/ab9045 | en_US |
dc.identifier.journal | NANOTECHNOLOGY | en_US |
dc.citation.volume | 31 | en_US |
dc.citation.issue | 33 | en_US |
dc.citation.spage | 0 | en_US |
dc.citation.epage | 0 | en_US |
dc.contributor.department | 光電學院 | zh_TW |
dc.contributor.department | College of Photonics | en_US |
dc.identifier.wosnumber | WOS:000540854500001 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 期刊論文 |