完整後設資料紀錄
DC 欄位語言
dc.contributor.authorBan, Jung-Chaoen_US
dc.contributor.authorChang, Chih-Hungen_US
dc.contributor.authorHuang, Nai-Zhuen_US
dc.date.accessioned2020-10-05T01:59:46Z-
dc.date.available2020-10-05T01:59:46Z-
dc.date.issued2020-07-01en_US
dc.identifier.issn0022-2488en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.5124073en_US
dc.identifier.urihttp://hdl.handle.net/11536/154896-
dc.description.abstractWe consider the entropy dimension of G-shifts of finite type for the case where G is a non-Abelian monoid. Entropy dimension tells us whether a shift space has zero topological entropy. Suppose the Cayley graph C-G of G has a finite representation (that is, {C-gG : g is an element of G} is a finite set up to graph isomorphism), and relations among generators of G are determined by a matrix A. We reveal an association between the characteristic polynomial of A and the finite representation of the Cayley graph. After introducing an algorithm for the computation of the entropy dimension, the set of entropy dimensions is related to a collection of matrices in which the sum of each row of every matrix is bounded by the number of leaves of the graph. Furthermore, the algorithm extends to G having finitely many free-followers.en_US
dc.language.isoen_USen_US
dc.titleEntropy dimension of shift spaces on monoidsen_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.5124073en_US
dc.identifier.journalJOURNAL OF MATHEMATICAL PHYSICSen_US
dc.citation.volume61en_US
dc.citation.issue7en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000548968900001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文