Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, Yu-Minen_US
dc.contributor.authorChou, Meng-Chuinen_US
dc.contributor.authorKang, Che-Haoen_US
dc.contributor.authorCheng, Yu-Tingen_US
dc.contributor.authorWu, Pu-Weien_US
dc.contributor.authorChen, Guan-Yuen_US
dc.contributor.authorSecor, Ethan B.en_US
dc.contributor.authorHersam, Mark C.en_US
dc.date.accessioned2020-10-05T01:59:47Z-
dc.date.available2020-10-05T01:59:47Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ACCESS.2020.2990501en_US
dc.identifier.urihttp://hdl.handle.net/11536/154907-
dc.description.abstractThis paper presents a versatile and precise graphene patterning technique using the combined process of masking and inkjet printing. A graphene-based structure is fabricated by first defining the structural pattern and position using a masking mold, which can be either electroplated copper or deep reactive ion etching (DRIE) silicon shadow mask, followed by inkjet deposition of graphene ink and lift-off. The hybrid technique can realize high-fidelity, high-resolution graphene-based microstructures including free-standing and cantilever beams, four-point resistive measurement structures, and piezoresistive sensing elements with a minimum line width of similar to 20 mu m. Moreover, this method can facilitate the micropatterning of graphene oxide (GO) and reduced graphene oxide (rGO) on substrates such as polydimethylsiloxane (PDMS) and SiO2/Si for selective cell culturing applications. Owing to the characteristics of low chemical usage, low process temperature and complexity, and high fiexibility and fault tolerance of inkjet printing, this technique demonstrates compelling potential for a variety of biomedical applications.en_US
dc.language.isoen_USen_US
dc.subjectMicroelectromechanical systemsen_US
dc.subjectinkjet printingen_US
dc.subjectmicrostructureen_US
dc.subjecttactile sensorsen_US
dc.titleAn Inkjet Printing Technique for Scalable Microfabrication of Graphene-Based Sensor Componentsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2020.2990501en_US
dc.identifier.journalIEEE ACCESSen_US
dc.citation.volume8en_US
dc.citation.spage79338en_US
dc.citation.epage79346en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.department生醫工程研究所zh_TW
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.contributor.departmentInstitute of Biomedical Engineeringen_US
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000549839700007en_US
dc.citation.woscount1en_US
Appears in Collections:Articles