標題: Virtual-freezing fluorescence imaging flow cytometry
作者: Mikami, Hideharu
Kawaguchi, Makoto
Huang, Chun-Jung
Matsumura, Hiroki
Sugimura, Takeaki
Huang, Kangrui
Lei, Cheng
Ueno, Shunnosuke
Miura, Taichi
Ito, Takuro
Nagasawa, Kazumichi
Maeno, Takanori
Watarai, Hiroshi
Yamagishi, Mai
Uemura, Sotaro
Ohnuki, Shinsuke
Ohya, Yoshikazu
Kurokawa, Hiromi
Matsusaka, Satoshi
Sun, Chia-Wei
Ozeki, Yasuyuki
Goda, Keisuke
光電工程學系
Department of Photonics
公開日期: 6-三月-2020
摘要: By virtue of the combined merits of flow cytometry and fluorescence microscopy, imaging flow cytometry (IFC) has become an established tool for cell analysis in diverse biomedical fields such as cancer biology, microbiology, immunology, hematology, and stem cell biology. However, the performance and utility of IFC are severely limited by the fundamental trade-off between throughput, sensitivity, and spatial resolution. Here we present an optomechanical imaging method that overcomes the trade-off by virtually freezing the motion of flowing cells on the image sensor to effectively achieve 1000 times longer exposure time for microscopy-grade fluorescence image acquisition. Consequently, it enables high-throughput IFC of single cells at >10,000 cells s(-1) without sacrificing sensitivity and spatial resolution. The availability of numerous information-rich fluorescence cell images allows high-dimensional statistical analysis and accurate classification with deep learning, as evidenced by our demonstration of unique applications in hematology and microbiology. High throughput imaging flow cytometry suffers from trade-offs between throughput, sensitivity and spatial resolution. Here the authors introduce a method to virtually freeze cells in the image acquisition window to enable 1000 times longer signal integration time and improve signal-to-noise ratio.
URI: http://dx.doi.org/10.1038/s41467-020-14929-2
http://hdl.handle.net/11536/154996
ISSN: 2041-1723
DOI: 10.1038/s41467-020-14929-2
期刊: NATURE COMMUNICATIONS
Volume: 11
Issue: 1
起始頁: 0
結束頁: 0
顯示於類別:期刊論文