Full metadata record
DC FieldValueLanguage
dc.contributor.authorMikami, Hideharuen_US
dc.contributor.authorKawaguchi, Makotoen_US
dc.contributor.authorHuang, Chun-Jungen_US
dc.contributor.authorMatsumura, Hirokien_US
dc.contributor.authorSugimura, Takeakien_US
dc.contributor.authorHuang, Kangruien_US
dc.contributor.authorLei, Chengen_US
dc.contributor.authorUeno, Shunnosukeen_US
dc.contributor.authorMiura, Taichien_US
dc.contributor.authorIto, Takuroen_US
dc.contributor.authorNagasawa, Kazumichien_US
dc.contributor.authorMaeno, Takanorien_US
dc.contributor.authorWatarai, Hiroshien_US
dc.contributor.authorYamagishi, Maien_US
dc.contributor.authorUemura, Sotaroen_US
dc.contributor.authorOhnuki, Shinsukeen_US
dc.contributor.authorOhya, Yoshikazuen_US
dc.contributor.authorKurokawa, Hiromien_US
dc.contributor.authorMatsusaka, Satoshien_US
dc.contributor.authorSun, Chia-Weien_US
dc.contributor.authorOzeki, Yasuyukien_US
dc.contributor.authorGoda, Keisukeen_US
dc.date.accessioned2020-10-05T01:59:52Z-
dc.date.available2020-10-05T01:59:52Z-
dc.date.issued2020-03-06en_US
dc.identifier.issn2041-1723en_US
dc.identifier.urihttp://dx.doi.org/10.1038/s41467-020-14929-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/154996-
dc.description.abstractBy virtue of the combined merits of flow cytometry and fluorescence microscopy, imaging flow cytometry (IFC) has become an established tool for cell analysis in diverse biomedical fields such as cancer biology, microbiology, immunology, hematology, and stem cell biology. However, the performance and utility of IFC are severely limited by the fundamental trade-off between throughput, sensitivity, and spatial resolution. Here we present an optomechanical imaging method that overcomes the trade-off by virtually freezing the motion of flowing cells on the image sensor to effectively achieve 1000 times longer exposure time for microscopy-grade fluorescence image acquisition. Consequently, it enables high-throughput IFC of single cells at >10,000 cells s(-1) without sacrificing sensitivity and spatial resolution. The availability of numerous information-rich fluorescence cell images allows high-dimensional statistical analysis and accurate classification with deep learning, as evidenced by our demonstration of unique applications in hematology and microbiology. High throughput imaging flow cytometry suffers from trade-offs between throughput, sensitivity and spatial resolution. Here the authors introduce a method to virtually freeze cells in the image acquisition window to enable 1000 times longer signal integration time and improve signal-to-noise ratio.en_US
dc.language.isoen_USen_US
dc.titleVirtual-freezing fluorescence imaging flow cytometryen_US
dc.typeArticleen_US
dc.identifier.doi10.1038/s41467-020-14929-2en_US
dc.identifier.journalNATURE COMMUNICATIONSen_US
dc.citation.volume11en_US
dc.citation.issue1en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000543996500001en_US
dc.citation.woscount2en_US
Appears in Collections:Articles