Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Jr-Changen_US
dc.contributor.authorTseng, Wen-Jieen_US
dc.contributor.authorWu, I-Chenen_US
dc.contributor.authorWei, Ting-Hanen_US
dc.date.accessioned2020-10-05T01:59:52Z-
dc.date.available2020-10-05T01:59:52Z-
dc.date.issued2020-06-01en_US
dc.identifier.issn2475-1502en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TG.2019.2893430en_US
dc.identifier.urihttp://hdl.handle.net/11536/154997-
dc.description.abstractThis paper describes the application of modified comparison training for automatic feature weight tuning. The final objective is to improve the evaluation functions used in Chinese chess programs. First, we apply n-tuple networks to extract features. N-tuple networks require very little expert knowledge through its large numbers of features, while simultaneously allowing easy access. Second, we propose a modified comparison training into which tapered eval is incorporated. Experiments show that with the same features and the same Chinese chess program, the automatically tuned feature weights achieved a win rate of 86.58% against the hand-tuned features. The above trained version was then improved by adding additional features, most importantly n-tuple features. This improved version achieved a win rate of 81.65% against the trained version without additional features.en_US
dc.language.isoen_USen_US
dc.subjectChinese chessen_US
dc.subjectcomparison trainingen_US
dc.subjectmachine learningen_US
dc.subjectn-tuple networksen_US
dc.titleComparison Training for Computer Chinese Chessen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TG.2019.2893430en_US
dc.identifier.journalIEEE TRANSACTIONS ON GAMESen_US
dc.citation.volume12en_US
dc.citation.issue2en_US
dc.citation.spage169en_US
dc.citation.epage176en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000544034800005en_US
dc.citation.woscount0en_US
Appears in Collections:Articles