Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Wei-Lunen_US
dc.contributor.authorWang, Hui-Poen_US
dc.contributor.authorPeng, Wen-Hsiaoen_US
dc.contributor.authorChiu, Wei-Chenen_US
dc.date.accessioned2020-10-05T02:00:30Z-
dc.date.available2020-10-05T02:00:30Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-3293-8en_US
dc.identifier.issn1063-6919en_US
dc.identifier.urihttp://dx.doi.org/10.1109/CVPR.2019.00200en_US
dc.identifier.urihttp://hdl.handle.net/11536/155023-
dc.description.abstractIn this paper we tackle the problem of unsupervised domain adaptation for the task of semantic segmentation, where we attempt to transfer the knowledge learned upon synthetic datasets with ground-truth labels to real-world images without any annotation. With the hypothesis that the structural content of images is the most informative and decisive factor to semantic segmentation and can be readily shared across domains, we propose a Domain Invariant Structure Extraction (DISE) framework to disentangle images into domain-invariant structure and domain-specific texture representations, which can further realize image-translation across domains and enable label transfer to improve segmentation performance. Extensive experiments verify the effectiveness of our proposed DISE model and demonstrate its superiority over several state-of-the-art approaches.en_US
dc.language.isoen_USen_US
dc.titleAll about Structure: Adapting Structural Information across Domains for Boosting Semantic Segmentationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/CVPR.2019.00200en_US
dc.identifier.journal2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019)en_US
dc.citation.spage1900en_US
dc.citation.epage1909en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000529484002007en_US
dc.citation.woscount5en_US
Appears in Collections:Conferences Paper