完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Tolyen_US
dc.contributor.authorWang, Yu-Chengen_US
dc.contributor.authorChiu, Min-Chien_US
dc.date.accessioned2020-10-05T02:01:01Z-
dc.date.available2020-10-05T02:01:01Z-
dc.date.issued1970-01-01en_US
dc.identifier.issn1868-5137en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s12652-020-02435-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/155077-
dc.description.abstractForecasting factory productivity is a critical task. However, it is not easy owing to the uncertainty of productivity. Existing methods often forecast productivity using a fuzzy number. However, the range of a fuzzy productivity forecast is wide owing to the consideration of extreme cases. In this study, a fuzzy collaborative forecasting approach is proposed to forecast factory productivity using a type-II fuzzy number and by narrowing the forecast's range. The outer section of the type-II fuzzy number determines the range of productivity, while the inner section is defuzzified to derive the most likely value. Based on the experimental results, the proposed methodology surpassed existing methods in improving forecasting precision and accuracy, with a reduction in the mean absolute percentage error (MAPE) of up to 74%.en_US
dc.language.isoen_USen_US
dc.subjectFuzzy collaborative forecastingen_US
dc.subjectType-II fuzzy numberen_US
dc.subjectMixed binary nonlinear programmingen_US
dc.subjectProductivityen_US
dc.titleA type-II fuzzy collaborative forecasting approach for productivity forecasting under an uncertainty environmenten_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12652-020-02435-8en_US
dc.identifier.journalJOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTINGen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000555729700001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文