標題: Matrix powers with circular numerical range
作者: Gau, Hwa-Long
Wang, Kuo-Zhong
應用數學系
Department of Applied Mathematics
關鍵字: Numerical range;Numerical radius;Numerical contraction
公開日期: 1-十月-2020
摘要: Let K-2 = [GRAPHICS}, K-n be the n x n weighted shift matrix with weights root 2, [GRAPHICS}, root 2 for all n >= 3, and K-infinity be the weighted shift operator with weights root 2, 1, 1, 1, .... In this paper, we show that if an n x n nonzero matrix A satisfies W(A(k)) = W(A) for all 1 <= k <= n, then W(A) cannot be a (nondegenerate) circular disc. Moreover, we also show that W(A) = W(A(n-1)) = {z is an element of C : vertical bar z vertical bar <= 1} if and only if A is unitarily similar to K-n. Finally, we prove that if T is a numerical contraction on an infinite-dimensional Hilbert space H, then lim(n ->infinity) parallel to T(n)x parallel to = root 2 for some unit vector x is an element of H if and only if T is unitarily similar to an operator of the form K-infinity circle plus T' with w(T') <= 1. (C) 2020 Elsevier Inc. All rights reserved.
URI: http://dx.doi.org/10.1016/j.laa.2020.05.039
http://hdl.handle.net/11536/155089
ISSN: 0024-3795
DOI: 10.1016/j.laa.2020.05.039
期刊: LINEAR ALGEBRA AND ITS APPLICATIONS
Volume: 603
起始頁: 190
結束頁: 211
顯示於類別:期刊論文