完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Gau, Hwa-Long | en_US |
dc.contributor.author | Wang, Kuo-Zhong | en_US |
dc.date.accessioned | 2020-10-05T02:01:02Z | - |
dc.date.available | 2020-10-05T02:01:02Z | - |
dc.date.issued | 2020-10-01 | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2020.05.039 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/155089 | - |
dc.description.abstract | Let K-2 = [GRAPHICS}, K-n be the n x n weighted shift matrix with weights root 2, [GRAPHICS}, root 2 for all n >= 3, and K-infinity be the weighted shift operator with weights root 2, 1, 1, 1, .... In this paper, we show that if an n x n nonzero matrix A satisfies W(A(k)) = W(A) for all 1 <= k <= n, then W(A) cannot be a (nondegenerate) circular disc. Moreover, we also show that W(A) = W(A(n-1)) = {z is an element of C : vertical bar z vertical bar <= 1} if and only if A is unitarily similar to K-n. Finally, we prove that if T is a numerical contraction on an infinite-dimensional Hilbert space H, then lim(n ->infinity) parallel to T(n)x parallel to = root 2 for some unit vector x is an element of H if and only if T is unitarily similar to an operator of the form K-infinity circle plus T' with w(T') <= 1. (C) 2020 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Numerical range | en_US |
dc.subject | Numerical radius | en_US |
dc.subject | Numerical contraction | en_US |
dc.title | Matrix powers with circular numerical range | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2020.05.039 | en_US |
dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
dc.citation.volume | 603 | en_US |
dc.citation.spage | 190 | en_US |
dc.citation.epage | 211 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000556369500012 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 期刊論文 |