Full metadata record
DC FieldValueLanguage
dc.contributor.authorSu, Jian-Jiaen_US
dc.contributor.authorTien, Chung-Haoen_US
dc.date.accessioned2020-10-05T02:01:04Z-
dc.date.available2020-10-05T02:01:04Z-
dc.date.issued2020-07-20en_US
dc.identifier.issn1687-9384en_US
dc.identifier.urihttp://dx.doi.org/10.1155/2020/3481830en_US
dc.identifier.urihttp://hdl.handle.net/11536/155113-
dc.description.abstractThe phase retrieval (PR), reconstructing an object from its Fourier magnitudes, is equivalent to a nonlinear inverse problem. In this paper, we proposed a two-step algorithm that traditional ER/HIO iteration plays as the coarse feature reconstruction, whereas the KSVD-based inpainting technique deals with the fine feature set accordingly. Since the KSVD allows the content of oversampled dictionary with sparse representation to adaptively fit a given set of object examples, as long as the ER/HIO algorithms provide decent object estimation at early stage, the pixels violating the object constraint can be restored with superior image quality. The numerical analyses demonstrated the effectiveness of ER + KSVD and HIO + KSVD through multiple independent initial Fourier phases. With its versatility and simplicity, the proposed method can be generalized to be implemented with more PR state-of-the-arts.en_US
dc.language.isoen_USen_US
dc.titleImproved Error Reduction and Hybrid Input Output Algorithms for Phase Retrieval by including a Sparse Dictionary Learning-Based Inpainting Methoden_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2020/3481830en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF OPTICSen_US
dc.citation.volume2020en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000558564100001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles