Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, Shin-Ping | en_US |
dc.contributor.author | Chen, Hong-Chih | en_US |
dc.contributor.author | Chen, Po-Hsun | en_US |
dc.contributor.author | Zheng, Yu-Zhe | en_US |
dc.contributor.author | Chu, Ann-Kuo | en_US |
dc.contributor.author | Shih, Yu-Shan | en_US |
dc.contributor.author | Wang, Yu-Xuan | en_US |
dc.contributor.author | Wu, Chia-Chuan | en_US |
dc.contributor.author | Chen, Yu-An | en_US |
dc.contributor.author | Sun, Pei-Jun | en_US |
dc.contributor.author | Huang, Hui-Chun | en_US |
dc.contributor.author | Lai, Wei-Chih | en_US |
dc.contributor.author | Chang, Ting-Chang | en_US |
dc.date.accessioned | 2020-10-05T02:01:09Z | - |
dc.date.available | 2020-10-05T02:01:09Z | - |
dc.date.issued | 2020-08-01 | en_US |
dc.identifier.issn | 0018-9383 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/TED.2020.3005366 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/155193 | - |
dc.description.abstract | The extent of the poly-silicon crystalline protrusion, a result of differences in excimer laser annealing (ELA), affects the performance and reliability of thin-film transistors (TFTs). This study investigates the degradation mechanism of the low-temperature polycrystalline silicon (LTPS) TFT devices with differences in crystalline protrusion under self-heating stress (SHS). Higher ELA energy will induce higher protrusion height in the interface between the poly-silicon and gate insulator (GI). This surface morphology leads to serious charge trapping into the GI layers; in contrast, the smallest degradation after SHS can be seen in the devices with the lowest protrusion height. This indicates that the degradation is caused by the surface morphology between the poly-Si and GI interface. In addition, the COMSOL simulation results confirm that the large electric field in the GI layer appears in the rough surface morphology devices; therefore, choosing the appropriate ELA energy of the poly-Si is beneficial for the applications of the driving TFT in organic light-emitting diode (OLED) display in the manufacturing industry. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Thin film transistors | en_US |
dc.subject | Logic gates | en_US |
dc.subject | Silicon | en_US |
dc.subject | Degradation | en_US |
dc.subject | Stress | en_US |
dc.subject | Grain size | en_US |
dc.subject | Reliability | en_US |
dc.subject | Excimer laser annealing (ELA) energy | en_US |
dc.subject | low-temperature polycrystalline silicon (LTPS) thin-film transistors (TFTs) | en_US |
dc.subject | protrusion | en_US |
dc.subject | self-heating effect | en_US |
dc.title | Effect of ELA Energy Density on Self-Heating Stress in Low-Temperature Polycrystalline Silicon Thin-Film Transistors | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TED.2020.3005366 | en_US |
dc.identifier.journal | IEEE TRANSACTIONS ON ELECTRON DEVICES | en_US |
dc.citation.volume | 67 | en_US |
dc.citation.issue | 8 | en_US |
dc.citation.spage | 3163 | en_US |
dc.citation.epage | 3166 | en_US |
dc.contributor.department | 電子工程學系及電子研究所 | zh_TW |
dc.contributor.department | Department of Electronics Engineering and Institute of Electronics | en_US |
dc.identifier.wosnumber | WOS:000552976100023 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |