Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Zhen-Chunen_US
dc.contributor.authorHuang, Kuo-Chingen_US
dc.contributor.authorLin, Chiangen_US
dc.contributor.authorShang, Jen-Lingen_US
dc.contributor.authorLee, Ming-Juen_US
dc.date.accessioned2020-10-05T02:01:09Z-
dc.date.available2020-10-05T02:01:09Z-
dc.date.issued2020-03-01en_US
dc.identifier.issn0315-3681en_US
dc.identifier.urihttp://hdl.handle.net/11536/155198-
dc.description.abstractAn edge labeling of a graph G is a bijection f : E(G) {1, 2, " " ", 1E(G)1}. The induced vertex sum f+ of f is a function defined on V(G) given by f+ (u) = E(G) f(uv) for all u E V(G). The value f+(u) is called the vertex sum at u. The graph G is called antimagic if there exists an edge labeling of G such that the vertex sums at all vertices of G are distinct. A star forest is the union of disjoint stars. Let S denote a star with n edges, and mS denote a star forest consisting of the disjoint m copies of S. It is known that mS2 is antimagic if and only if m = 1. In this study, a necessary condition and a sufficient condition are obtained whereby a star forest mS2 U Snr U Snz U " " " U Sn, (ni, n2, " " ", nk > 3) may be antimagic. In addition, a necessary and sufficient condition is obtained whereby a star forest mS2 US (n > 3) may be antimagic. Moreover, a graph consisting of disjoint stars together with an extra disjoint path is also verified to be antimagic.en_US
dc.language.isoen_USen_US
dc.titleAntimagicness of star forestsen_US
dc.typeArticleen_US
dc.identifier.journalUTILITAS MATHEMATICAen_US
dc.citation.volume114en_US
dc.citation.spage283en_US
dc.citation.epage294en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000553641800019en_US
dc.citation.woscount0en_US
Appears in Collections:Articles