標題: The Role of Micro RNA and Long-Non-Coding RNA in Osteoporosis
作者: Ko, Nai-Yu
Chen, Li-Ru
Chen, Kuo-Hu
機械工程學系
Department of Mechanical Engineering
關鍵字: osteoporosis;micro RNA;miRNA;long-non-coding RNA;lncRNA
公開日期: 1-七月-2020
摘要: Osteoporosis is a major concern worldwide and can be attributed to an imbalance between osteoblastic bone formation and osteoclastic bone resorption due to the natural aging process. Heritable factors account for 60-80% of optimal bone mineralization; however, the finer details of pathogenesis remain to be elucidated. Micro RNA (miRNA) and long-non-coding RNA (lncRNA) are two targets that have recently come into the spotlight due to their ability to control gene expression at the post-transcriptional level and provide epigenetic modification. miRNAs are a class of non-coding RNAs that are approximately 18-25 nucleotides long. It is thought that up to 60% of human protein-coding genes may be regulated by miRNAs. They have been found to regulate gene expression that controls osteoblast-dependent bone formation and osteoclast-related bone remodeling. lncRNAs are highly structured RNA transcripts longer than 200 nucleotides that do not translate into proteins. They have very complex secondary and tertiary structures and the same degradation processes as messenger RNAs. The fact that they have a rapid turnover is due to their sponge function in binding the miRNAs that lead to a degradation of the lncRNA itself. They can act as signaling, decoy, and framework molecules, or as primers. Current evidence suggests that lncRNAs can act as chromatin and transcriptional as well as post-transcriptional regulators. With regards to osteoporosis, lncRNA is thought to be involved in the proliferation, apoptosis, and inflammatory response of the bone. This review, which is based on a systematic appraisal of the current literature, provides current molecular and genetic opinions on the roles of miRNAs and lncRNAs in osteoporosis. Further research into the epigenetic modification and the regulatory roles of these molecules will bring us closer to potential disease-modifying treatment for osteoporosis. However, more issues regarding the detailed actions of miRNAs and lncRNAs in osteoporosis remain unknown and controversial and warrant future investigation.
URI: http://dx.doi.org/10.3390/ijms21144886
http://hdl.handle.net/11536/155209
DOI: 10.3390/ijms21144886
期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume: 21
Issue: 14
起始頁: 0
結束頁: 0
顯示於類別:期刊論文