完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Cheng-Jianen_US
dc.contributor.authorJhang, Jyun-Yuen_US
dc.contributor.authorChen, Shao-Hsienen_US
dc.contributor.authorYoung, Kuu-Youngen_US
dc.date.accessioned2020-10-05T02:01:11Z-
dc.date.available2020-10-05T02:01:11Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ACCESS.2020.3006849en_US
dc.identifier.urihttp://hdl.handle.net/11536/155228-
dc.description.abstractThe precision of part machining is influenced by the tool life. Tools gradually wear out during the cutting process, which reduces the machining accuracy. Many studies have used machining parameters and sensor signals to predict flank wear; however, these methods have many limitations related to sensor installation, which is not only time-consuming and costly but also impractical in industry. This paper proposes an interval type-2 fuzzy neural network (IT2FNN) based on the dynamic-group cooperative differential evolution algorithm for flank wear prediction. Moreover, the Taguchi method is used to design cutting experiments for collecting experimental data and reducing the number of experiments. The CIE-xy color chromaticity values, spindle speed, feed per tooth, cutting depth, and cutting time are used as inputs of the IT2FNN, and the output is the flank wear value. The experimental results indicate that the proposed method can effectively predict flank wear with higher efficiency than other algorithms.en_US
dc.language.isoen_USen_US
dc.subjectFlank wearen_US
dc.subjectchip surfaceen_US
dc.subjectcolor calibrationen_US
dc.subjectinterval type-2 fuzzy neural networken_US
dc.subjectdifferential evolutionen_US
dc.titleUsing an Interval Type-2 Fuzzy Neural Network and Tool Chips for Flank Wear Predictionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2020.3006849en_US
dc.identifier.journalIEEE ACCESSen_US
dc.citation.volume8en_US
dc.citation.spage122626en_US
dc.citation.epage122640en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000555545000001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文