Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chi-Kunen_US
dc.contributor.authorWu, Kung-Chienen_US
dc.date.accessioned2014-12-08T15:21:47Z-
dc.date.available2014-12-08T15:21:47Z-
dc.date.issued2012-06-01en_US
dc.identifier.issn1078-0947en_US
dc.identifier.urihttp://dx.doi.org/10.3934/dcds.2012.32.2233en_US
dc.identifier.urihttp://hdl.handle.net/11536/15525-
dc.description.abstractWe study the nonrelativistic, semiclassical and nonrelativistic-semiclassical limits of the (modulated) nonlinear Klein-Gordon equations from its hydrodynamical structure via WKB analysis. The nonrelativistic-semiclassical limit is proved rigorously by modulated energy method.en_US
dc.language.isoen_USen_US
dc.subjectNonlinear Klein-Gordon equationen_US
dc.subjectnonlinear Schrodinger equationen_US
dc.subjectsemiclassical limiten_US
dc.subjectnonrelativistic limiten_US
dc.subjectnonrelativistic-semiclassical limiten_US
dc.subjectcompressible Euler equationsen_US
dc.subjectWKB approximationen_US
dc.subjectwave mapen_US
dc.titleON THE FLUID DYNAMICAL APPROXIMATION TO THE NONLINEAR KLEIN-GORDON EQUATIONen_US
dc.typeArticleen_US
dc.identifier.doi10.3934/dcds.2012.32.2233en_US
dc.identifier.journalDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMSen_US
dc.citation.volume32en_US
dc.citation.issue6en_US
dc.citation.spage2233en_US
dc.citation.epage2251en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000300517100018-
dc.citation.woscount1-
Appears in Collections:Articles