Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Chi-Kun | en_US |
dc.contributor.author | Wu, Kung-Chien | en_US |
dc.date.accessioned | 2014-12-08T15:21:47Z | - |
dc.date.available | 2014-12-08T15:21:47Z | - |
dc.date.issued | 2012-06-01 | en_US |
dc.identifier.issn | 1078-0947 | en_US |
dc.identifier.uri | http://dx.doi.org/10.3934/dcds.2012.32.2233 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/15525 | - |
dc.description.abstract | We study the nonrelativistic, semiclassical and nonrelativistic-semiclassical limits of the (modulated) nonlinear Klein-Gordon equations from its hydrodynamical structure via WKB analysis. The nonrelativistic-semiclassical limit is proved rigorously by modulated energy method. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Nonlinear Klein-Gordon equation | en_US |
dc.subject | nonlinear Schrodinger equation | en_US |
dc.subject | semiclassical limit | en_US |
dc.subject | nonrelativistic limit | en_US |
dc.subject | nonrelativistic-semiclassical limit | en_US |
dc.subject | compressible Euler equations | en_US |
dc.subject | WKB approximation | en_US |
dc.subject | wave map | en_US |
dc.title | ON THE FLUID DYNAMICAL APPROXIMATION TO THE NONLINEAR KLEIN-GORDON EQUATION | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3934/dcds.2012.32.2233 | en_US |
dc.identifier.journal | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS | en_US |
dc.citation.volume | 32 | en_US |
dc.citation.issue | 6 | en_US |
dc.citation.spage | 2233 | en_US |
dc.citation.epage | 2251 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | 數學建模與科學計算所(含中心) | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.contributor.department | Graduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000300517100018 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |