Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Cheng-Anen_US
dc.contributor.authorSong, Kai-Taien_US
dc.date.accessioned2020-10-05T02:01:29Z-
dc.date.available2020-10-05T02:01:29Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-89-93215-18-2en_US
dc.identifier.issn2093-7121en_US
dc.identifier.urihttp://hdl.handle.net/11536/155271-
dc.description.abstractThe task of robotic human-following requires a mobile robot to detect and follow the selected target person and maintain an appropriate distance to the person. In practical applications, the robot must continuously estimate the target location considering unexpected obstacles to keep stable human-following control. This paper proposes to combine human-following control with obstacle avoidance, so that the robot can avoid obstacles while simultaneously follow the target person. In this design, obstacle as well as human features are obtained by using a RGB-D camera. A deep neural network(DNN) model works to detect and identify the user in the environment. An improved artificial potential field (APF) is applied to robot motion planning by integrating the target human position and obstacle information. Practical experiments on a mobile robot verified the proposed method. The robot can follow the user stably while avoiding obstacles in an indoor environment.en_US
dc.language.isoen_USen_US
dc.subjectHuman-followingen_US
dc.subjectObstacle avoidanceen_US
dc.subjectMotion predictionen_US
dc.subjectMotion controlen_US
dc.subjectMobile roboten_US
dc.titleControl Design for Robotic Human-Following and Obstacle Avoidance Using an RGB-D Cameraen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019)en_US
dc.citation.spage934en_US
dc.citation.epage939en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000555707100132en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper