完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Hsin-Chiehen_US
dc.contributor.authorChen, Tolyen_US
dc.contributor.authorHuang, Chin-Hauen_US
dc.date.accessioned2020-10-05T02:01:54Z-
dc.date.available2020-10-05T02:01:54Z-
dc.date.issued2020-08-01en_US
dc.identifier.urihttp://dx.doi.org/10.3390/math8081319en_US
dc.identifier.urihttp://hdl.handle.net/11536/155320-
dc.description.abstractMost existing fuzzy AHP (FAHP) methods use triangular fuzzy numbers to approximate the fuzzy priorities of criteria, which is inaccurate. To obtain accurate fuzzy priorities, time-consuming alpha-cut operations are usually required. In order to improve the accuracy and efficiency of estimating the fuzzy priorities of criteria, the piecewise linear fuzzy geometric mean (PLFGM) approach is proposed in this study. The PLFGM method estimates the alpha cuts of fuzzy priorities and then connects these alpha cuts with straight lines. As a result, the estimated fuzzy priorities will have piecewise linear membership functions that resemble the real shapes. The PLFGM approach has been applied to the identification of critical features for a smart backpack design. According to the experimental results, the PLFGM approach improved the accuracy and efficiency of estimating the fuzzy priorities of these critical features by 33% and 80%, respectively.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy analytic hierarchy processen_US
dc.subjectfuzzy geometric meanen_US
dc.subjectalpha-cut operationsen_US
dc.subjectpiecewise linearen_US
dc.titleA Piecewise Linear FGM Approach for Efficient and Accurate FAHP Analysis: Smart Backpack Design as an Exampleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/math8081319en_US
dc.identifier.journalMATHEMATICSen_US
dc.citation.volume8en_US
dc.citation.issue8en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000565563800001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文