Full metadata record
DC FieldValueLanguage
dc.contributor.authorChan, C. K.en_US
dc.contributor.authorTu, C. Y.en_US
dc.contributor.authorYeh, S. D.en_US
dc.contributor.authorChang, C. C.en_US
dc.contributor.authorLin, T. C.en_US
dc.contributor.authorLuo, C. W.en_US
dc.contributor.authorHwang, C. S.en_US
dc.date.accessioned2020-10-05T02:01:56Z-
dc.date.available2020-10-05T02:01:56Z-
dc.date.issued2020-10-01en_US
dc.identifier.issn0042-207Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.vacuum.2020.109650en_US
dc.identifier.urihttp://hdl.handle.net/11536/155350-
dc.description.abstractA gasket-type standard leak element with a microfluidic channel was developed and measured. The microfluidic channel with a diameter of several micrometers and a length of one hundred micrometers was fabricated by using femtosecond laser micromachining. The conductances (<1 x 10(-6) L s(-1)) of the micmfluidic channel for various non-condensable gases - H-2, He, CH4, N-2 and CO2 were determined by a measuring system based on conductance modulation (CM) method. The experimental results show that the flow characteristics of our devices exhibit molecular flow at a pressure up to 100 mbar and the conductance values of H-2, He, CH4, N-2 and CO2 are inversely proportional to the square root of their molecular mass.en_US
dc.language.isoen_USen_US
dc.subjectLeak elementen_US
dc.subjectFemtosecond laser ablationen_US
dc.subjectMolecular flow conductanceen_US
dc.subjectMicrofluidicen_US
dc.titleA gasket-type standard leak element using femtosecond laser micromachiningen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.vacuum.2020.109650en_US
dc.identifier.journalVACUUMen_US
dc.citation.volume180en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000566762900007en_US
dc.citation.woscount0en_US
Appears in Collections:Articles