完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Yong-Xiangen_US
dc.contributor.authorTan, Daniel Stanleyen_US
dc.contributor.authorChen, Yung-Yaoen_US
dc.contributor.authorHuang, Ching-Chunen_US
dc.contributor.authorHua, Kai-Lungen_US
dc.date.accessioned2020-10-05T02:01:57Z-
dc.date.available2020-10-05T02:01:57Z-
dc.date.issued2020-07-01en_US
dc.identifier.issn1070-986Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/MMUL.2020.3008529en_US
dc.identifier.urihttp://hdl.handle.net/11536/155364-
dc.description.abstractSelf-driving cars leverage on semantic segmentation to understand an urban scene. However, it is costly to collect segmentation labels, thus, synthetic datasets are used to train segmentation models. Unfortunately, the synthetic to real domain shift causes these models to perform poorly. Prior works use adversarial training to align features of both synthetic and real-world images. We observe that background objects tend to be similar across domains, while foreground objects tend to have more variations. Using this insight, we propose an adaptation method that uses foreground and background cues and adapt them separately. We also propose a mask-aware gated discriminator that learns soft masks from the input foreground and background masks instead of naively performing binary masking that immediately removes information outside of the predicted masks. We evaluate our method on two different datasets and show that our method outperforms several state-of-the-art baselines, which verifies the effectiveness of our approach.en_US
dc.language.isoen_USen_US
dc.subjectImage segmentationen_US
dc.subjectSemanticsen_US
dc.subjectAdaptation modelsen_US
dc.subjectLogic gatesen_US
dc.subjectAutomobilesen_US
dc.subjectTraining dataen_US
dc.subjectComputer scienceen_US
dc.subjectAutonmous automobilesen_US
dc.titleDomain Adaptation With Foreground/Background Cues and Gated Discriminatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/MMUL.2020.3008529en_US
dc.identifier.journalIEEE MULTIMEDIAen_US
dc.citation.volume27en_US
dc.citation.issue3en_US
dc.citation.spage44en_US
dc.citation.epage53en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000567430300006en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文