完整後設資料紀錄
DC 欄位語言
dc.contributor.authorZhu, Yunminen_US
dc.contributor.authorHe, Zuyunen_US
dc.contributor.authorChoi, YongManen_US
dc.contributor.authorChen, Huijunen_US
dc.contributor.authorLi, Xiaobaoen_US
dc.contributor.authorZhao, Boteen_US
dc.contributor.authorYu, Yien_US
dc.contributor.authorZhang, Huien_US
dc.contributor.authorStoerzinger, Kelsey A.en_US
dc.contributor.authorFeng, Zhenxingen_US
dc.contributor.authorChen, Yanen_US
dc.contributor.authorLiu, Meilinen_US
dc.date.accessioned2020-10-05T02:01:57Z-
dc.date.available2020-10-05T02:01:57Z-
dc.date.issued2020-08-27en_US
dc.identifier.issn2041-1723en_US
dc.identifier.urihttp://dx.doi.org/10.1038/s41467-020-17657-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/155374-
dc.description.abstractDeveloping highly efficient and cost-effective oxygen evolution reaction (OER) electrocatalysts is critical for many energy devices. While regulating the proton-coupled electron transfer (PCET) process via introducing additive into the system has been reported effective in promoting OER activity, controlling the PCET process by tuning the intrinsic material properties remains a challenging task. In this work, we take double perovskite oxide PrBa0.5Sr0.5Co1.5Fe0.5O5+delta (PBSCF) as a model system to demonstrate enhancing OER activity through the promotion of PCET by tuning the crystal orientation and correlated proton diffusion. OER kinetics on PBSCF thin films with (100), (110), and (111) orientation, deposited on single crystal LaAlO3 substrates, were investigated using electrochemical measurements, density functional theory (DFT) calculations, and synchrotron-based near ambient X-ray photoelectron spectroscopy. The results clearly show that the OER activity and the ease of deprotonation depend on orientation and follow the order of (100) > (110) > (111). Correlated with OER activity, proton diffusion is found to be the fastest in the (100) film, followed by (110) and (111) films. Our results point out a way of boosting PCET and OER activity, which can also be successfully applied to a wide range of crucial applications in green energy and environment. Proton-coupled electron transfer (PCET) has been observed in chemical, energy, and biological transformation processes. Here we demonstrate that the rate of PCET and oxygen evolution reaction can be dramatically enhanced by tuning crystal orientation and the correlated proton diffusion.en_US
dc.language.isoen_USen_US
dc.titleTuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxidesen_US
dc.typeArticleen_US
dc.identifier.doi10.1038/s41467-020-17657-9en_US
dc.identifier.journalNATURE COMMUNICATIONSen_US
dc.citation.volume11en_US
dc.citation.issue1en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department光電學院zh_TW
dc.contributor.departmentCollege of Photonicsen_US
dc.identifier.wosnumberWOS:000567931900004en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文