Full metadata record
DC FieldValueLanguage
dc.contributor.authorFan, Yongjianen_US
dc.contributor.authorXu, Wenjunen_US
dc.contributor.authorLee, Chia-Hanen_US
dc.contributor.authorWu, Sileien_US
dc.contributor.authorYang, Fanen_US
dc.contributor.authorZhang, Pingen_US
dc.date.accessioned2020-10-05T02:01:58Z-
dc.date.available2020-10-05T02:01:58Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ACCESS.2020.3019310en_US
dc.identifier.urihttp://hdl.handle.net/11536/155378-
dc.description.abstractEnergy harvesting cognitive radio network (EH-CRN) is a promising approach to address the shortage of spectrum resources and the increase of energy consumption simultaneously in wireless networks. In this article, we propose a novel machine learning (ML)-based energy-spectrum two-dimensional (2D) cognition technology to improve the sensing accuracy as well as the network throughput in EH-CRNs, which consists of sensing, prediction and decision modules. More specifically, we first study the 2D sensing module which is achieved by a carefully constructed dynamic Bayesian network (DBN) to effectively exploit the coupling between spectrum usage and energy harvesting in EH-CRNs. Then we propose a deep neural network (DNN) based 2D transmission decision module to optimize the transmission energy of secondary users (SUs). With our proposed novel 2D cognition scheme, SUs can characterize the energy-spectrum correlation and transmit data with optimal transmission energy. The proposed ML-based 2D cognition is evaluated via extensive simulations in terms of sensing accuracy, prediction accuracy, and network throughput, and simulation results indicate that our proposed scheme significantly outperforms the conventional one-dimensional (1D) cognition scheme working in spectrum or energy dimension only.en_US
dc.language.isoen_USen_US
dc.subjectSensorsen_US
dc.subjectTwo dimensional displaysen_US
dc.subjectCognitionen_US
dc.subjectCorrelationen_US
dc.subjectEnergy harvestingen_US
dc.subjectHidden Markov modelsen_US
dc.subjectMachine learningen_US
dc.subjectMachine learningen_US
dc.subject2D cognitionen_US
dc.subjectenergy-spectrum correlationen_US
dc.subjectprobability graph modelen_US
dc.subjectenergy harvesting CRNsen_US
dc.titleMachine Learning-Based Energy-Spectrum Two-Dimensional Cognition in Energy Harvesting CRNsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2020.3019310en_US
dc.identifier.journalIEEE ACCESSen_US
dc.citation.volume8en_US
dc.citation.spage158911en_US
dc.citation.epage158927en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000568220100001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles