Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmer, Mohammeden_US
dc.contributor.authorWang, Chi-Chuanen_US
dc.date.accessioned2020-10-05T02:01:59Z-
dc.date.available2020-10-05T02:01:59Z-
dc.date.issued2020-10-01en_US
dc.identifier.issn1359-4311en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.applthermaleng.2020.115729en_US
dc.identifier.urihttp://hdl.handle.net/11536/155406-
dc.description.abstractThe present experimental study examines the effect of ultrasonic vibration on the frost formation under a free convective environment. A stainless steel SS ANSI 316 flat surface is tested under 12-24 degrees C dry bulb temperature and 58-84% relative humidity. The experiments are conducted with direct contact and non-contact high-frequency ultrasonic source having continuous or intermittent vibrations. The ultrasonic transducer contains 28 +/- 0.5 kHz resonance frequency. It is found that increasing the relative humidity will increase the frost thickness and influences the frost property. Imposing ultrasonic vibration under high relative humidity and low ambient temperature increases the droplets' circularity with comparatively sparse distribution. Test results indicate that non-contact vibration has no effect on the frost formation. Intensive intermittent contact vibration is the most effective way to suppress frost growth. Compared to continuous contact vibration, either it is applied after each an hour or after every 30 min as an intensive continuous, intensive intermittent contact vibration shows a reduction in frost thickness as much as 24%. In addition, the ultrasonic vibration should be applied after the supersaturation stage since ultrasonic vibration enhances the supercooled process.en_US
dc.language.isoen_USen_US
dc.subjectUltrasonic defrostingen_US
dc.subjectFrost formationen_US
dc.subjectFrost thicknessen_US
dc.subjectHeat transferen_US
dc.subjectCold surfaceen_US
dc.subjectNatural convectionen_US
dc.titleExperimental investigation on defrosting of a cold flat plate via ultrasonic vibration under natural convectionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.applthermaleng.2020.115729en_US
dc.identifier.journalAPPLIED THERMAL ENGINEERINGen_US
dc.citation.volume179en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000560800500086en_US
dc.citation.woscount0en_US
Appears in Collections:Articles