完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChou, Yu-Cheen_US
dc.contributor.authorTsai, Chien-Weien_US
dc.contributor.authorYi, Chin-Yaen_US
dc.contributor.authorChung, Wan-Hsuanen_US
dc.contributor.authorWang, Shin-Yuanen_US
dc.contributor.authorChien, Chao-Hsinen_US
dc.date.accessioned2020-10-05T02:02:01Z-
dc.date.available2020-10-05T02:02:01Z-
dc.date.issued2020-09-01en_US
dc.identifier.issn0018-9383en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TED.2020.3008887en_US
dc.identifier.urihttp://hdl.handle.net/11536/155439-
dc.description.abstractIn this work, we fabricated charge-trapping MemTransistors (CTMTs) on a germanium (Ge) substrate with a single-charge-trapping-layer gate-stack or a double-charge-trapping-layer gate-stack. We first constructed the energy band diagram of two gate stacks using transmission electron microscope (TEM) images and by X-ray photoelectron spectroscopy analysis. We deposited Al2O3 as a tunneling layer and a barrier layer using an atomic layer deposition (ALD) system while depositing HfO2 by ALD as the charge-trapping layer whose conduction band offset with respect to Al2O3 is 1.74 eV. Next, we demonstrated the memory characteristics of the CTMTs. By implementing the double-charge-trapping-layer gate-stack on the CTMT, we were able to enlarge the memory windows by 372 mV, improve the retention by 2.7%, and reduce the read disturbance. Furthermore, we demonstrated the synaptic device characteristics of the CTMTs. With the optimization of pulse schemes, we reduced the nonlinearity of potentiation (alpha(p)) and depression (alpha(d)) from 8.62 and -6.01 to 0.71 and 0.01, respectively, enlarged the ON/OFF ratio from 10.2 to 66.2, and increased the recognition accuracy from 24.5% to 82.1% simultaneously. With the implementation of the double-charge-trapping-layer gate-stack, we could further enlarge the ON/OFF ratio to 75.3 and increase the recognition accuracy to 86.5% simultaneously.en_US
dc.language.isoen_USen_US
dc.subjectAnalog memoriesen_US
dc.subjectartificial intelligence (AI)en_US
dc.subjectdielectric materialsen_US
dc.subjectgermanium (Ge)en_US
dc.subjectMOSFETsen_US
dc.subjectmulti-layer perceptrons (MLPs)en_US
dc.subjectneural network hardwareen_US
dc.subjectpattern recognitionen_US
dc.subjectsemiconductor memoriesen_US
dc.titleNeuro-Inspired-in-Memory Computing Using Charge-Trapping MemTransistor on Germanium as Synaptic Deviceen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TED.2020.3008887en_US
dc.identifier.journalIEEE TRANSACTIONS ON ELECTRON DEVICESen_US
dc.citation.volume67en_US
dc.citation.issue9en_US
dc.citation.spage3605en_US
dc.citation.epage3609en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000562091800015en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文