完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Tsun-Huaen_US
dc.contributor.authorWang, Chia-Weien_US
dc.contributor.authorLin, Sheng-Jheen_US
dc.date.accessioned2020-10-05T02:02:02Z-
dc.date.available2020-10-05T02:02:02Z-
dc.date.issued2020-09-01en_US
dc.identifier.issn1364-8152en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.envsoft.2020.104771en_US
dc.identifier.urihttp://hdl.handle.net/11536/155452-
dc.description.abstractWater level monitoring and forecasting are essential tasks in flood emergency response. This study proposes an Edge COMputing-based Sensory NETwork (ECOMSNet), an innovative decentralized early warning system (EWS), for water level monitoring and prediction. A sensor-embedded algorithm integrates the direct step method (DSM) with a microgenetic algorithm (MGA). This algorithm predicts the water surface profile and corrects it once water level observations are available. It also meets efficiency requirements to accommodate sensor computation limitations. The errors in the predicted water surface profiles in channels with gradually varied flows are 5% in a laboratory flume experiment and below 10% in a field experiment. The ECOMSNet is an achievement of edge computing-based Internet of Things. It shows potential to increase emergency response efficiency. However, the system requires further refinement and testing if it is to adequately address rapidly varied unsteady flow in a scaled-up implementation.en_US
dc.language.isoen_USen_US
dc.subjectEarly warning systemen_US
dc.subjectEdge computingen_US
dc.subjectIoTen_US
dc.subjectMicrogenetic algorithmen_US
dc.subjectWater level predictionen_US
dc.titleECOMSNet - An edge computing-based sensory network for real-time water level prediction and correctionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.envsoft.2020.104771en_US
dc.identifier.journalENVIRONMENTAL MODELLING & SOFTWAREen_US
dc.citation.volume131en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000562677000001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文