完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Chia-Mingen_US
dc.contributor.authorMishra, Siddharth Deepaken_US
dc.contributor.authorIgarashi, Takeoen_US
dc.date.accessioned2020-10-05T02:02:20Z-
dc.date.available2020-10-05T02:02:20Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-0810-0en_US
dc.identifier.issn1943-6092en_US
dc.identifier.urihttp://hdl.handle.net/11536/155494-
dc.description.abstractManual image labeling (selecting an appropriate "category" for an image) is very tedious and time consuming especially when selecting labels from a large number of categories. In this study, we propose a hierarchical assignment of labeling tasks where the labelers recursively classify images in a category group into sub category groups, working on a single level at a time. This significantly makes each labeler's task easier, reducing the number of choices from 1,000 to 27 on average. In the user study, we compared our hierarchical assignment to a normal (non-hierarchical) assignment for a labeling task. The results show that the hierarchical assignment requires less total time to complete the labeling task. In addition, the learning effect in the labeling process is more profound in the hierarchical assignment.en_US
dc.language.isoen_USen_US
dc.subjecthierarchical assignmenten_US
dc.subjectimage labelingen_US
dc.subjecthuman-computer interactionen_US
dc.subjectmachine learningen_US
dc.titleA Hierarchical Task Assignment for Manual Image Labelingen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE SYMPOSIUM ON VISUAL LANGUAGES AND HUMAN-CENTRIC COMPUTING (VL/HCC 2019)en_US
dc.citation.spage139en_US
dc.citation.epage143en_US
dc.contributor.department傳播與科技學系zh_TW
dc.contributor.departmentDepartment of Communication and Technologyen_US
dc.identifier.wosnumberWOS:000561703800017en_US
dc.citation.woscount0en_US
顯示於類別:會議論文