完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Cheng-Hsuanen_US
dc.contributor.authorKuo, Bor-Chenen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorHuang, Chih-Shengen_US
dc.date.accessioned2014-12-08T15:21:53Z-
dc.date.available2014-12-08T15:21:53Z-
dc.date.issued2012-03-01en_US
dc.identifier.issn0196-2892en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TGRS.2011.2162246en_US
dc.identifier.urihttp://hdl.handle.net/11536/15589-
dc.description.abstractRecent studies show that hyperspectral image classification techniques that use both spectral and spatial information are more suitable, effective, and robust than those that use only spectral information. Using a spatial-contextual term, this study modifies the decision function and constraints of a support vector machine (SVM) and proposes two kinds of spatial-contextual SVMs for hyperspectral image classification. One machine, which is based on the concept of Markov random fields (MRFs), uses the spatial information in the original space (SCSVM). The other machine uses the spatial information in the feature space (SCSVMF), i.e., the nearest neighbors in the feature space. The SCSVM is better able to classify pixels of different class labels with similar spectral values and deal with data that have no clear numerical interpretation. To evaluate the effectiveness of SCSVM, the experiments in this study compare the performances of other classifiers: an SVM, a context-sensitive semisupervised SVM, a maximum likelihood (ML) classifier, a Bayesian contextual classifier based on MRFs (ML_MRF), and k nearest neighbor classifier. Experimental results show that the proposed method achieves good classification performance on famous hyperspectral images (the Indian Pine site (IPS) and the Washington, DC mall data sets). The overall classification accuracy of the hyperspectral image of the IPS data set with 16 classes is 95.5%. The kappa accuracy is up to 94.9%, and the average accuracy of each class is up to 94.2%.en_US
dc.language.isoen_USen_US
dc.subjectClassificationen_US
dc.subjectMarkov random fields (MRFs)en_US
dc.subjectspatial-contextual informationen_US
dc.subjectsupport vector machines (SVMs)en_US
dc.titleA Spatial-Contextual Support Vector Machine for Remotely Sensed Image Classificationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TGRS.2011.2162246en_US
dc.identifier.journalIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSINGen_US
dc.citation.volume50en_US
dc.citation.issue3en_US
dc.citation.spage784en_US
dc.citation.epage799en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000300724300010-
dc.citation.woscount22-
顯示於類別:期刊論文


文件中的檔案:

  1. 000300724300010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。