Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Shih-Hungen_US
dc.contributor.authorChou, Chung-Hsienen_US
dc.contributor.authorChung, Chen-Fangen_US
dc.contributor.authorPai, Wen-Pangen_US
dc.contributor.authorLiu, Tse-Hanen_US
dc.contributor.authorChang, Yung-Shengen_US
dc.contributor.authorLi, Jung-Cheen_US
dc.contributor.authorTing, Huan-Chanen_US
dc.contributor.authorChen, Yon-Pingen_US
dc.date.accessioned2014-12-08T15:22:14Z-
dc.date.available2014-12-08T15:22:14Z-
dc.date.issued2011en_US
dc.identifier.isbn978-89-93215-03-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/15746-
dc.description.abstractThis paper presents a grey neural network-based forecasting system (GNNFS) in solving the prediction problem. GNNFS adopts a grey model to predict the signal and a neural network (NN) to forecast the prediction error of the grey model. A sequential batch learning (SBL) is developed to adjust the weights of the NN. The proposed GNNFS is applied to a binocular robot, called an Eye-Robot, for human-robot interaction which involved predicting the trajectory of a participant's hand and tracking the hand. By applying the SBL, the GNNFS can gradually learn to predict the trajectory of the hand and track it well. The experimental results show that the GNNFS can carry out the SBL in real-time for vision-guided robot trajectory tracking.en_US
dc.language.isoen_USen_US
dc.subjectGrey modelen_US
dc.subjectneural networken_US
dc.subjectpredictionen_US
dc.subjectlearningen_US
dc.subjectroboten_US
dc.titleGrey Neural Network-Based Forecasting System for Vision-Guided Robot Trajectory Trackingen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS)en_US
dc.citation.spage1512en_US
dc.citation.epage1517en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000300490000294-
Appears in Collections:Conferences Paper