Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Cheng-Kuan | en_US |
dc.contributor.author | Ho, Tung-Yang | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.date.accessioned | 2014-12-08T15:22:18Z | - |
dc.date.available | 2014-12-08T15:22:18Z | - |
dc.date.issued | 2012-04-01 | en_US |
dc.identifier.issn | 0381-7032 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/15781 | - |
dc.description.abstract | A k-container C(u, v) of G between u and v is a set of k internally disjoint paths between u and v. A k-container C(u, v) of G is a k*-container if it contains all nodes of G. A graph G is k*-connected if there exists a k*-container between any two distinct nodes. The spanning connectivity of G, kappa* (G), is defined to be the largest integer k such that G is omega*-connected for all 1 <= omega <= k if G is an 1*-connected graph and undefined if otherwise. A graph G is super spanning connected if kappa*(G) = kappa(G). In this paper, we prove that the n-dimensional augmented cube AQ(n) is super spanning connected. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | hamiltonian | en_US |
dc.subject | hamiltonian connected | en_US |
dc.subject | container | en_US |
dc.subject | connectivity | en_US |
dc.title | Super Spanning Connectivity of Augmented Cubes | en_US |
dc.type | Article | en_US |
dc.identifier.journal | ARS COMBINATORIA | en_US |
dc.citation.volume | 104 | en_US |
dc.citation.issue | en_US | |
dc.citation.spage | 161 | en_US |
dc.citation.epage | 177 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000302035100013 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |