完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Yi-Shianen_US
dc.contributor.authorTong, Lee-Ingen_US
dc.date.accessioned2014-12-08T15:22:20Z-
dc.date.available2014-12-08T15:22:20Z-
dc.date.issued2012-03-01en_US
dc.identifier.issn1996-1073en_US
dc.identifier.urihttp://dx.doi.org/10.3390/en5030545en_US
dc.identifier.urihttp://hdl.handle.net/11536/15810-
dc.description.abstractSolar energy has become an important energy source in recent years as it generates less pollution than other energies. A photovoltaic (PV) system, which typically has many components, converts solar energy into electrical energy. With the development of advanced engineering technologies, the transfer efficiency of a PV system has been increased from low to high. The combination of components in a PV system influences its transfer efficiency. Therefore, when predicting the transfer efficiency of a PV system, one must consider the relationship among system components. This work accurately predicts whether transfer efficiency of a PV system is high or low using a novel hybrid model that combines rough set theory (RST), data envelopment analysis (DEA), and genetic programming (GP). Finally, real data-set are utilized to demonstrate the accuracy of the proposed method.en_US
dc.language.isoen_USen_US
dc.subjectphotovoltaic systemsen_US
dc.subjectrough set theoryen_US
dc.subjectdata envelopment analysisen_US
dc.subjectgenetic programmingen_US
dc.subjecthybrid modelen_US
dc.titlePredicting High or Low Transfer Efficiency of Photovoltaic Systems Using a Novel Hybrid Methodology Combining Rough Set Theory, Data Envelopment Analysis and Genetic Programmingen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/en5030545en_US
dc.identifier.journalENERGIESen_US
dc.citation.volume5en_US
dc.citation.issue3en_US
dc.citation.spage545en_US
dc.citation.epage560en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000302153800002-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000302153800002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。