Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, JCen_US
dc.contributor.authorLin, JYen_US
dc.contributor.authorChen, Zen_US
dc.date.accessioned2014-12-08T15:02:59Z-
dc.date.available2014-12-08T15:02:59Z-
dc.date.issued1996-01-01en_US
dc.identifier.issn0253-3839en_US
dc.identifier.urihttp://hdl.handle.net/11536/1583-
dc.description.abstractThis paper presents a histogram-based clustering method that automatically determines the number of clusters in a set of data points. Input data are first partitioned into several rectangular blocks. The number of points in each block is determined, and the thirty percent of the blocks with the most points are marked to obtain a feature. Next, the forty percent of the blocks with the most points are marked to obtain a second feature. These two features are then compared to determine the number of clusters in the input data. The proposed clustering method is fast, and the data to be clustered do not need to be linearly separable. Experimental results are included.en_US
dc.language.isoen_USen_US
dc.subjectclusteringen_US
dc.subjectdifferent densityen_US
dc.subjectnumber of clustersen_US
dc.titleClustering by comparing regions of different densityen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF THE CHINESE INSTITUTE OF ENGINEERSen_US
dc.citation.volume19en_US
dc.citation.issue1en_US
dc.citation.spage35en_US
dc.citation.epage47en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1996TZ41000004-
dc.citation.woscount0-
Appears in Collections:Articles