完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Sheng-Fuuen_US
dc.contributor.authorChen, Hsien-Tseen_US
dc.contributor.authorTsai, Tung-Lungen_US
dc.date.accessioned2014-12-08T15:22:23Z-
dc.date.available2014-12-08T15:22:23Z-
dc.date.issued2012-02-01en_US
dc.identifier.issn1016-2372en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S1016237212002949en_US
dc.identifier.urihttp://hdl.handle.net/11536/15845-
dc.description.abstractLaryngopharyngeal Reflux mostly leads to burns of the pharynx and larynx by reflux from gastric acid and also leads to different degrees of burns in the esophagus and the stomach. This paper aims to develop a technique for analyzing pharyngeal and laryngeal images. With techniques of digital image processing, this paper can choose the suitable images from burns of the pharynx and larynx to obtain the feature zones of burns of the pharynx and larynx. Artificial neural network helps physicians to develop the diagnostic standard about the burns severity of Laryngopharyngeal Reflux. This paper divides the types of the complications into three degrees and compares with other ways (Hanson et al.(5) and Ilgner et al.(6)). The results can be the technical assistance in helping physicians to diagnose the severity of Laryngopharyngeal Reflux and to make a more precise diagnosis.en_US
dc.language.isoen_USen_US
dc.subjectLaryngopharyngeal Refluxen_US
dc.subjectFeature extractionen_US
dc.subjectImage processingen_US
dc.subjectArtificial neural networken_US
dc.titleAUTOMATIC IDENTIFYING LARYNGOPHARYNGEAL REFLUX USING ARTIFICIAL NEURAL NETWORKen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S1016237212002949en_US
dc.identifier.journalBIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONSen_US
dc.citation.volume24en_US
dc.citation.issue1en_US
dc.citation.spage47en_US
dc.citation.epage56en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000302074800006-
dc.citation.woscount0-
顯示於類別:期刊論文