Full metadata record
DC FieldValueLanguage
dc.contributor.authorChoi, Charles T. M.en_US
dc.contributor.authorLee, Yi-Hsuanen_US
dc.date.accessioned2014-12-08T15:22:34Z-
dc.date.available2014-12-08T15:22:34Z-
dc.date.issued2009en_US
dc.identifier.isbn978-3-540-92840-9en_US
dc.identifier.issn1680-0737en_US
dc.identifier.urihttp://hdl.handle.net/11536/15960-
dc.description.abstractIndependent component analysis (ICA) is the dominant method to resolve blind source separation (BSS) problem. In this article we conducted experiments to evaluate the separation performance of ICA for acoustic signals. Experiments results show that if we can find appropriate placement of microphones, applying ICA to hearing prostheses as pre-processing can help the wearer hear more clear sounds.en_US
dc.language.isoen_USen_US
dc.subjectIndependent Component Analysis (ICA)en_US
dc.subjectAcoustic Signals Separationen_US
dc.subjectHearing Prosthesesen_US
dc.titleExtracting Speech Signals using Independent Component Analysisen_US
dc.typeProceedings Paperen_US
dc.identifier.journal13TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, VOLS 1-3en_US
dc.citation.volume23en_US
dc.citation.issue1-3en_US
dc.citation.spage179en_US
dc.citation.epage182en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000268245600043-
Appears in Collections:Conferences Paper