Full metadata record
DC FieldValueLanguage
dc.contributor.authorLo, Wen-Huien_US
dc.contributor.authorChen, Sin-Horngen_US
dc.date.accessioned2014-12-08T15:03:00Z-
dc.date.available2014-12-08T15:03:00Z-
dc.date.issued2008en_US
dc.identifier.isbn978-1-4244-2174-9en_US
dc.identifier.issn1051-4651en_US
dc.identifier.urihttp://hdl.handle.net/11536/1597-
dc.description.abstractRobust parameters estimation of sparse data is generally applied to the test cases of time-consuming or high cost data collection. This study concerns with the problem in small sample size which is often encountered in the client data processing for speaker verification. We found that there always exists a coverage mismatch problem between the samples and its population in terms of probability density function (pdf) when the sample size is less than 20. We call this special problem the distribution mismatch (DM) problem. The paper proposes to solve the DM problem through addressing a new coverage-based estimator.en_US
dc.language.isoen_USen_US
dc.titleRobust Estimation for Sparse Dataen_US
dc.typeProceedings Paperen_US
dc.identifier.journal19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6en_US
dc.citation.spage1319en_US
dc.citation.epage1323en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000264729000324-
Appears in Collections:Conferences Paper